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Abstract: 
The performance of a vertical porous membrane barrier as a breakwater to reduce the 
wave load on a floating structure near a wall is investigated using linearized water wave 
theory. The physical problem is modeled in the two dimensional Cartesian coordinate 
system. A rigid rectangular box is floating in water of finite depth near a rigid vertical 
wall. The porous membrane breakwater touches the bottom and the tip of the membrane 
is submerged. Both ends of the membrane are assumed to be kept fixed. The method of 
eigenfunction expansion and the corresponding orthogonal mode-coupling relations are 
used to obtain an analytic solution to the boundary value problem. The effect of porosity 
and tension of the membrane on the wave transmission, wave length and wave 
amplitude is analyzed. 
Keywords: 
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1. Introduction 
In the past two decades, there has been a growing interest in using flexible membrane as 
a portable and sacrificial breakwater in various coastal situations. Membrane barriers 
are lightweight, easily deployable and removable and hence environmental friendly. 
They can be air dropped via an inflatable buoy and self erected. In coastal engineering, 
partial bottom mounted barrier is often preferred as it not only reduces the wave 
amplitude at the resonance, but also allows the navigation of vessels and controls the 
coastal erosion by restricting the sediment transport (YIP et al., 2002). 
The performance of vertical tensioned single and dual membranes spanning the entire 
water depth were studied by KIM & KEE (1996), KEE & KIM (1997), LO (2000) and 
LEE & LO (2002) and the literature cited therein. 
In addition to the flexible nature of the breakwater, porous structures are often 
suggested for breakwater systems as they are more efficient in dissipating the incident 
wave energy and thus reducing the wave load on the barrier (CHWANG & CHAN, 
1998). The porosity of the barrier enables the passage of the underwater stream. 
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Different aspects of flexible, porous breakwater systems are analyzed by LEE & 
CHWANG (2000), SAHOO et al. (2000), YIP et al. (2002), SURESH KUMAR et al. 
(2007) and the literature cited therein. 
In the present study, the performance of a vertical porous membrane as a breakwater in 
order to reduce the wave load on a floating structure near a wall is investigated. The 
effect of the porosity constant and the tension along the membrane on the wave 
transmission, wave length and wave amplitude is analyzed. In addition, the horizontal 
deflection of the membrane is also evaluated. 
 
2. Mathematical formulation 
In the two-dimensional Cartesian coordinate system, the problem is described in a 
schematic diagram as shown in Fig.1. The body is considered fixed by attachments to 
the wall, which do not affect the flow filed. 
 

 
Figure 1. Schematic diagram. 

 
Under the linear wave theory, the fluid is assumed to be inviscid, incompressible and 
the motion is irrotational and harmonic in time with angular frequency ω. Hence, there 
exists a velocity potential of the form    , , Re , i tx y t x y e       , where (x,y) 
satisfies the Laplace equation in the fluid domain along with the standard free surface 
boundary condition. The normal velocity on the rigid bottom, the wall and on the wetted 
body boundary of the floating rectangular box vanishes. 
The boundary condition on the porous membrane based on the Darcy’s law is given by 
(see SAHOO et al. (2000), and YIP et al. (2002)): 

 0 2 1 1, , , 1, 2,j x ik G i x r h y h j             (1) 

where G is the complex porous effect parameter and is given by (see SAHOO et al. 
(2000), and YU (1995)): 

    2 2
0r i mG G iG f is k d f s      (2) 
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γ is the porosity constant, which is defined as the ratio of the porous area to the whole 
area of the membrane, f is the resistance force coefficient, s is the inertial force 
coefficient, dm is the thickness of the membrane, k0 is the incident wave number and 
(y) is the spatial horizontal deflection of the membrane. The dissipation of the incident 
wave energy is related to the resistant effect of the membrane, whereas the inertial force 
coefficient causes the phase shift of the wave motion. The membrane becomes 
impermeable when G  tends to zero, while the membrane becomes transparent for G  
tending to infinity. It is assumed that (y) is small compared to the wavelength. The 
membrane deflection (y) is determined by solving the differential equation: 

 2 2 2
2 1 1, , ,d dy m T i T x r h y h             (3) 

where m is the membrane mass per unit area and T is the tension per unit length along 
the membrane length. The fixed end edge conditions are prescribed as: 

   1 0.h h    (4) 

Assuming that the velocity and pressure are continuous across the gaps, the matching 
conditions are given by: 

3 4 3 4, , , ,x x x b d y h              (5a) 

2 3 2 3, , , ,x x x b d y h             (5b) 

1 2 1 2 1, , ,0 .x x x r y h             (5c) 

The wave field satisfies the usual far field radiation condition. 
 
3. Method of solution 
The velocity potentials i, i=1,…,4 in the four regions are expanded in terms of 
appropriate eigenfunctions as in BHATTACHARJEE & GUEDES SOARES (2011), 
who analyzed the oblique wave interaction with a floating structure near a wall having a 
stepped bottom by the method of eigenfunction expansion. The same method is used 
here to study the effect of porous membrane barrier in water of uniform depth. Using 
the conditions in Eq. (1) and (5a, 5b, 5c) and applying the orthogonal properties of the 
eigenfunctions, a linear system of algebraic equations is obtained to determine the 
unknowns. The surface elevations in region 1, 2 and 4 are evaluated from the kinematic 
boundary condition and the membrane deflection is obtained from Eq. (3). 
 
4. Results and discussions 
In the present section, numerical results for the free surface wave elevations 1 , 2  and 

4  in region 1,2 and 4, respectively, and the membrane deflection   are discussed for 
different values of the dimensionless membrane tension T´=T/ρgh2 and porosity 
constant G. The following numerical values are kept fixed throughout the computations: 
ρ=1025 kg m-3, g=9.81m s-2, h=50 m, a=50 m, b=10 m, d=2 m and m´=m/ρh=0.1. It is 
observed that the infinite series sums converge for N=15 to 20 terms and hence is taken 
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as N=20 for all the numerical computations. This shows that the method is efficient in 
terms of computation time and memory. 
 

 
Figure 2. Free surface elevations η1 and η2 

in regions 1 and 2 for ω√(d/g)=0.5, 
G=1+2i, r=20 m, h1=10 m and 

dimensionless tension T´=0.1,0.2,0.4. 

 
Figure 3. Free surface elevation η4 in 

region 4 for ω√(d/g)=0.5, G=1+2i, r=20 
m, h1=10 m and dimensionless tension 

T´=0.1,0.2,0.4. 
 
Numerical computation shows that the reflection of incoming waves is always very 
high, which is obvious as the incoming waves get reflected by the rigid floating 
structure and the rigid wall. Figure 2 shows that the wave amplitude and the wavelength 
do not change significantly due to the presence of the membrane. This is perhaps due to 
the reason that the membrane is submerged below the free surface and the gravity waves 
are propagating on the free surface. 
Figure 3 shows that the free surface elevation η4 in region 4 is almost identical for 
different membrane tension. However, the wave amplitude is reduced significantly in 
comparison to the incident wave region. Hence, the wave load on the wall will be less 
than what it will experience if it is subject to direct incident wave attack. 
 

 
Figure 4. Membrane deflection for 

ω√(d/g)=0.5, G=1+2i, r=20 m, h1=10 m 
and dimensionless tension T´=0.1,0.2,0.4. 

 
Figure 5. Free surface elevations η1 and η2 

in regions 1 and 2 for ω√(d/g)=0.5, 
T´=0.4, r=20 m, h1=10 m and porosity 

constant G=1,2,1+2i . 
 
Figure 4 shows that the membrane deflection  reduces as T´ along the membrane 
increases. Further,  = 0 at the two ends, which supports the theoretical assumption of 
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fixed edge conditions. Figures 5 and 6 show that the effect of G on the propagation of 
surface waves in region 1, 2 and 4 is almost negligible. It is noticed that the wave 
amplitude in region 4 increases for non zero real and imaginary parts of G. This is due 
to the fact that for |G|>1, the porous nature of the barrier increases and more waves pass 
through the barrier. The results assert that the effect of the submerged partial barrier is 
negligible as most of the incoming wave energy is concentrated near the free surface. 
 

 
Figure 6. Free surface elevation η4 in 

region 4 for ω√(d/g)=0.5, T´=0.4, r=20 m, 
h1=10 m and porosity constant 

G=1,2,1+2i . 

 
Figure 7. Membrane deflection  for 
ω√(d/g)=0.5, T´=0.4, r=20 m, h1=10 m 

and porosity constant G=1,2,1+2i. 

 
Figure 7 shows the variation of membrane deflection for various values of G. It shows 
that as the imaginary part of G increases, the porous nature is reduced due to the 
dominance of the inertial effect. Therefore, dissipation of the incoming wave energy 
reduces and as a consequence the membrane deflection increases. On the other hand, for 
zero inertial effect, the membrane experiences sinusoidal deflections. 
 
5. Conclusions 
The performance of a partial bottom touching porous membrane as a breakwater to 
protect a floating structure near a wall is analyzed in the linear wave theory. The method 
of eigenfunction expansion is utilized to obtain an analytic solution. The method is 
efficient in terms of computer memory and time. It is observed that the effect of 
membrane tension and porosity constant on the free surface elevations in region 1 and 2 
is almost negligible. However, the deflection of the membrane depends largely on these 
parameters. This is perhaps due to the reason that the partial barrier is submerged at the 
bottom and wave energy of the free surface gravity waves is concentrated near the free 
surface. The present results suggest more detailed study of different membrane 
configurations and comparison of results for a better understanding of the physics. 
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